The midbody ring scaffolds the abscission machinery in the absence of midbody microtubules
نویسندگان
چکیده
Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring-derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the Caenorhabditis elegans embryo. We show that abscission occurs in two stages. First, the cytoplasm in the daughter cells becomes isolated, coincident with formation of the intercellular bridge; proper progression through this stage required the septins (a midbody ring component) but not the membrane-remodeling endosomal sorting complex required for transport (ESCRT) machinery. Second, the midbody and midbody ring are released into a specific daughter cell during the subsequent cell division; this stage required the septins and the ESCRT machinery. Surprisingly, midbody microtubules were dispensable for both stages. These results delineate distinct steps during abscission and highlight the central role of the midbody ring, rather than midbody microtubules, in their execution.
منابع مشابه
Final Stages of Cytokinesis and Midbody Ring Formation Are Controlled by BRUCE
Cytokinesis involves the formation of a cleavage furrow, followed by abscission, the cutting of the midbody channel, the final bridge between dividing cells. Recently, the midbody ring became known as central for abscission, but its regulation remains enigmatic. Here, we identify BRUCE, a 528 kDa multifunctional protein, which processes ubiquitin-conjugating activity, as a major regulator of ab...
متن کاملESCRT Function in Cytokinesis: Location, Dynamics and Regulation by Mitotic Kinases
Mammalian cytokinesis proceeds by constriction of an actomyosin ring and furrow ingression, resulting in the formation of the midbody bridge connecting two daughter cells. At the centre of the midbody resides the Flemming body, a dense proteinaceous ring surrounding the interlocking ends of anti-parallel microtubule arrays. Abscission, the terminal step of cytokinesis, occurs near the Flemming ...
متن کاملMembrane remodeling during embryonic abscission in Caenorhabditis elegans
Abscission is the final step of cytokinesis and results in the physical separation of two daughter cells. In this study, we conducted a time-resolved series of electron tomographic reconstructions to define the steps required for the first embryonic abscission in Caenorhabditis elegans Our findings indicate that membrane scission occurs on both sides of the midbody ring with random order and th...
متن کاملMidbody assembly and its regulation during cytokinesis
The midbody is a transient structure that connects two daughter cells at the end of cytokinesis, with the principal function being to localize the site of abscission, which physically separates two daughter cells. Despite its importance, understanding of midbody assembly and its regulation is still limited. Here we describe how the structural composition of the midbody changes during progressio...
متن کاملWnt5a signaling controls cytokinesis by correctly positioning ESCRT-III at the midbody.
Wnts activate at least two signaling pathways, the β-catenin-dependent and -independent pathways. Although the β-catenin-dependent pathway is known to contribute to G1-S transition, involvement of the β-catenin-independent pathway in cell cycle regulation remains unclear. Here, we show that Wnt5a signaling, which activates the β-catenin-independent pathway, is required for cytokinesis. Dishevel...
متن کامل